The graphs whose permanental polynomials are symmetric
نویسندگان
چکیده
منابع مشابه
Some Families of Graphs whose Domination Polynomials are Unimodal
Let $G$ be a simple graph of order $n$. The domination polynomial of $G$ is the polynomial $D(G, x)=sum_{i=gamma(G)}^{n} d(G,i) x^{i}$, where $d(G,i)$ is the number of dominating sets of $G$ of size $i$ and $gamma(G)$ is the domination number of $G$. In this paper we present some families of graphs whose domination polynomials are unimodal.
متن کاملsome families of graphs whose domination polynomials are unimodal
let $g$ be a simple graph of order $n$. the domination polynomial of $g$ is the polynomial $d(g, x)=sum_{i=gamma(g)}^{n} d(g,i) x^{i}$, where $d(g,i)$ is the number of dominating sets of $g$ of size $i$ and $gamma(g)$ is the domination number of $g$. in this paper we present some families of graphs whose domination polynomials are unimodal.
متن کاملOn the permanental polynomials of some graphs∗
Let G be a simple graph with adjacency matrix A(G) and π(G,x) the permanental polynomial of G. Let G × H denotes the Cartesian product of graphs G and H. Inspired by Klein’s idea to compute the permanent of some matrices (Mol. Phy., 1976, Vol. 31, (3): 811−823), in this paper in terms of some orientation of graphs we study the permanental polynomial of a type of graphs. Here are some of our mai...
متن کاملComputing the permanental polynomials of bipartite graphs by Pfaffian orientation
The permanental polynomial of a graph G is π(G,x) , per(xI −A(G)). From the result that a bipartite graph G admits an orientation Ge such that every cycle is oddly oriented if and only if it contains no even subdivision of K2,3, Yan and Zhang showed that the permanental polynomial of such a bipartite graph G can be expressed as the characteristic polynomial of the skew adjacency matrix A(Ge). I...
متن کاملAn efficient algorithm for computing permanental polynomials of graphs
An efficient numerical method for computing permanental polynomials of graphs is proposed. It adapts multi-entry expansion of FFT, and is parallel in nature. It is applied to fullerene-type graphs, and works for C56, while the largest fullerene computed before is C40. Extensive numerical computations show that the algorithm is fast and stable. © 2006 Elsevier B.V. All rights reserved. PACS: 02....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discussiones Mathematicae Graph Theory
سال: 2018
ISSN: 1234-3099,2083-5892
DOI: 10.7151/dmgt.1986